12 research outputs found

    Genetics of muscle growth in chickens and mice

    Get PDF

    Transcriptomic response to ISAV infection in the gills, head kidney and spleen of resistant and susceptible Atlantic salmon

    Get PDF
    Abstract Background Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. Results Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. Conclusions Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome

    Influence of dietary phospholipid on early development and performance of Atlantic salmon (Salmo salar)

    Get PDF
    The present study aimed to confirm the requirement for dietary phospholipid in Atlantic salmon and better define the level and period of requirement. Thus, the effects of dietary supplementation with phospholipid supplied by krill or soy lecithin were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing 55 % protein and 17 % lipid supplemented with krill oil or soybean lecithin in a regression design at five levels, 1.5 (unsupplemented), 2.6, 3.2, 3.6 and 4.2 % total phospholipid and fish were sampled at 1 g (1400 ˚day post fertilisation, dpf), 2.5 g (1990 ˚dpf), 5 g (2350 ˚dpf), 10-20 g (2850 ˚dpf) and smolt (3800 ˚dpf). Survival was high overall with a positive correlation (r2 = 0.59 - 0.72) between survival and dietary phospholipid supplementation. Growth was improved by phospholipid with highest growth achieved in fish fed krill phospholipid at 2.6 % and in fish fed soy lecithin at 3.6 %. The pattern of growth differed between fish up to 2.5 g and that from 2.5 g onwards with SGR (0-2.5 g) being significantly higher in fish fed 2.6 % krill phospholipid and 3.6 % soy phospholipid compared to the basal diet, whereas there was no difference in SGR (2.5g-smolt) between the treatments. Intestinal steatosis was observed in 2.5 g fish fed the unsupplemented diet (20 % prevalence) and lower levels of soy (10 % prevalence), whereas it was absent from 2.5 g fish fed krill oil and higher levels of soy lecithin (≥ 3.2 %), and fish at all later stages. Prevalence of vertebral deformities was low but was reduced by increasing dietary phospholipid with krill oil generally being more effective. The results were consistent with salmon having a dietary requirement for dietary phospholipid in early life stages

    Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    Get PDF
    BackgroundDense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. ResultsSNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. ConclusionsThis manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection

    Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon

    Get PDF
    Background: Restriction site-associated DNA sequencing (RAD-Seq) is a genome complexity reduction technique that facilitates large-scale marker discovery and genotyping by sequencing. Recent applications of RAD-Seq have included linkage and QTL mapping with a particular focus on non-model species. In the current study, we have applied RAD-Seq to two Atlantic salmon families from a commercial breeding program. The offspring from these families were classified into resistant or susceptible based on survival/mortality in an Infectious Pancreatic Necrosis (IPN) challenge experiment, and putative homozygous resistant or susceptible genotype at a major IPN-resistance QTL. From each family, the genomic DNA of the two heterozygous parents and seven offspring of each IPN phenotype and genotype was digested with the SbfI enzyme and sequenced in multiplexed pools. Results: Sequence was obtained from approximately 70,000 RAD loci in both families and a filtered set of 6,712 segregating SNPs were identified. Analyses of genome-wide RAD marker segregation patterns in the two families suggested SNP discovery on all 29 Atlantic salmon chromosome pairs, and highlighted the dearth of male recombination. The use of pedigreed samples allowed us to distinguish segregating SNPs from putative paralogous sequence variants resulting from the relatively recent genome duplication of salmonid species. Of the segregating SNPs, 50 were linked to the QTL. A subset of these QTL-linked SNPs were converted to a high-throughput assay and genotyped across large commercial populations of IPNV-challenged salmon fry. Several SNPs showed highly significant linkage and association with resistance to IPN, and population linkage-disequilibrium-based SNP tests for resistance were identified. Conclusions: We used RAD-Seq to successfully identify and characterise high-density genetic markers in pedigreed aquaculture Atlantic salmon. These results underline the effectiveness of RAD-Seq as a tool for rapid and efficient generation of QTL-targeted and genome-wide marker data in a large complex genome, and its possible utility in farmed animal selection programs

    Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array

    Get PDF
    Background The genetic architecture of complex traits in farmed animal populations is of interest from a scientific and practical perspective. The use of genetic markers to predict the genetic merit (breeding values) of individuals is commonplace in modern farm animal breeding schemes. Recently, high density SNP arrays have become available for Atlantic salmon, which facilitates genomic prediction and association studies using genome-wide markers and economically important traits. The aims of this study were (i) to use a high density SNP array to investigate the genetic architecture of weight and length in juvenile Atlantic salmon; (ii) to assess the utility of genomic prediction for these traits, including testing different marker densities; (iii) to identify potential candidate genes underpinning variation in early growth. Results A pedigreed population of farmed Atlantic salmon (n = 622) were measured for weight and length traits at one year of age, and genotyped for 111,908 segregating SNP markers using a high density SNP array. The heritability of both traits was estimated using pedigree and genomic relationship matrices, and was comparable at around 0.5 and 0.6 respectively. The results of the GWA analysis pointed to a polygenic genetic architecture, with no SNPs surpassing the genome-wide significance threshold, and one SNP associated with length at the chromosome-wide level. SNPs surpassing an arbitrary threshold of significance (P < 0.005, ~ top 0.5 % of markers) were aligned to an Atlantic salmon reference transcriptome, identifying 109 SNPs in transcribed regions that were annotated by alignment to human, mouse and zebrafish protein databases. Prediction of breeding values was more accurate when applying genomic (GBLUP) than pedigree (PBLUP) relationship matrices (accuracy ~ 0.7 and 0.58 respectively) and 5,000 SNPs were sufficient for obtaining this accuracy increase over PBLUP in this specific population. Conclusions The high density SNP array can effectively capture the additive genetic variation in complex traits. However, the traits of weight and length both appear to be very polygenic with only one SNP surpassing the chromosome-wide threshold. Genomic prediction using the array is effective, leading to an improvement in accuracy compared to pedigree methods, and this improvement can be achieved with only a small subset of the markers in this population. The results have practical relevance for genomic selection in salmon and may also provide insight into variation in the identified genes underpinning body growth and development in salmonid species

    The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar)

    Get PDF
    BACKGROUND: Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. RESULTS: The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6–7 % of the within-family variation in these traits. CONCLUSIONS: We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0215-y) contains supplementary material, which is available to authorized users

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL

    No full text
    Infectious pancreatic necrosis (IPN) is a viral disease with a significant negative impact on the global aquaculture of Atlantic salmon. IPN outbreaks can occur during specific windows of both the freshwater and seawater stages of the salmon life cycle. Previous research has shown that a proportion of the variation seen in resistance to IPN is because of host genetics, and we have shown that major quantitative trait loci (QTL) affect IPN resistance at the seawater stage of production. In the current study, we completed a large freshwater IPN challenge experiment to allow us to undertake a thorough investigation of the genetic basis of resistance to IPN in salmon fry, with a focus on previously identified QTL regions. The heritability of freshwater IPN resistance was estimated to be 0.26 on the observed scale and 0.55 on the underlying scale. Our results suggest that a single QTL on linkage group 21 explains almost all the genetic variation in IPN mortality under our experimental conditions. A striking contrast in mortality is seen between fry classified as homozygous susceptible versus homozygous resistant, with QTL-resistant fish showing virtually complete resistance to IPN mortality. The findings highlight the importance of the major QTL in the genetic regulation of IPN resistance across distinct physiological lifecycle stages, environmental conditions and viral isolates. These results have clear scientific and practical implications for the control of IPN
    corecore